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Abstract 
Warfighters have benefited significantly from the enormous advances in digital technology over 
the past several decades. In contrast, too little of the considerable progress in neuroscience has 
been applied to improving warfighter performance. We believe this reflects the absence of digital 
technology that can help bridge the gap between neuroscience and digital systems. We believe this 
gap might be filled by constructing a computational model of the neuro-cognitive activity of the 
warfighter. We propose that such a model could be created by algorithms applied to 
measurements of brain activity obtained using functional MRI. Algorithmic processing of these 
measurements can exploit a variety of statistical machine learning methods to synthesize a new 
kind of neuro-cognitive model, which we call neurometric models. These executable models could 
be incorporated into a number of applications for assessing and improving mental performance, 
including battlefield training and treatment of disorders such as PTSD. The long term goal is to 
enable systems that can better adapt to the warfighter in real-time due to model-generated 
hypotheses about the individual's neuro-cognitive state. 

Introduction 
While fMRI has been used for research purposes for over a decade and a half, the analysis of 

the data produced by this imaging technology has been primarily for the benefit of neuro-
cognitive researchers who are conducting scientific enquiry into how all brains work in general. It 
has not been applied in any significant degree to improving performance of the individual. The 
traditional scientific goals has lead to an anatomically oriented approach: attempts are made to 
determine what functionality individual regions of the brain provide. This requires a high degree 
of precision that current fMRI technology has difficulty providing, and is compounded by the 
variation among individuals. 

Whereas this standard approach uses anatomy as the fundamental frame of reference, we will 
take a different approach, one that instead utilizes computation as the fundamental frame of 
reference. Our proposed schema will transform measurements of brain activity algorithmically 
and automatically into an abstract neuro-cognitive computational model of simple tasks being 
performed by individuals. We call such measurement-driven models, Neurometric Models.  

While computational neuroscience has been pursuing modeling of the brain for several 
decades, many of these efforts have been 1) anatomically based, 2) concerned with brains in 
general, 3) are spatially oriented, and 4) have built software models manually. In contrast, our 
approach will be 1) computationally based, 2) targets modeling a given individual's brain, 3) will 
emphasize the temporal domain, and 4) is synthesized automatically. This last point is critical 
given our goal of modeling individual brains, because the cost of manual model construction 
would most likely be prohibitive otherwise. 

Our approach builds on recent work that uses pattern recognition algorithms applied to fMRI 
images to identify brain states. The brain states will be limited to those that occur while an 
individual is performing a task of interest, such as those taught using virtual-world based training 
systems. No attempt will be made to model brain functionality in general, which is presently far 
too ambitious. The specific anatomical distribution of brain activity will be captured by a pattern 
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recognizer that is created using artificial neural networks trained on the fMRI data.  

Experimental Design 
For our stimuli, we used 3D virtual environments like those used in training simulators. Each 
stimulus was created using Unreal Development Kit 3.0, which is a combination authoring and 
rendering system used for commercial game and simulation products. Using virtual environments, 
as opposed to photographs or drawings, exploits the brain's natural design for operating in a 3D 
environment. Compared to video, virtual environments enable interactivity that is needed for 
performing a task. Virtual environments also provide a high degree of control over the design of 
the stimuli, as well as complete knowledge of its contents.  

For this study, we created a small virtual town suggestive of those encountered in current 
Middle East combat zones. We introduced into this environment three categories of characters: 
soldiers, insurgents, and indigenous civilians (see below). The view for the virtual camera was 
chosen to be 1st person, as is typical of most training systems, in order to create the impression of 
being an agent in the environment. We created a very simple scenario suggestive of searching for 
snipers. We alternated between moving the viewer through pasts of the town in which there were 
no characters present (searching), and stopping at certain locations where characters appeared in 
varying combinations (encountering). The characters and the viewer were always exhibiting slight 
motion, so at no time was there static imagery. 

We chose a mixed block design for our initial experiments. In many examples of block designs 
for cognitive neuroscience, there is an alternation between presenting the desired stimulus and 
displaying a blank screen (perhaps with a cross-hair to give the subject something to focus on). 
This technique maximizes the contrast when a single simple task or stimulus is to be quantified. In 
our case, such a radical alternation would be alien to the example application of training. Rather, 
we chose to always maintain the experience of being in the virtual world with continuous motion. 
Our use of block design alternates between the two modes: 1) moving through the town with no 
characters visible (searching), 2) remaining in a single location in the town with a mix of 
characters directly in front of the viewer (encountering). Each of the two phases was 15 seconds 
long, for a total of 30 seconds for each character combination. The nature of the encounters 
varied from block to block, but the retention of a block design structure was chosen to enable 
selection of responsive voxels in the fMRI data. 

 
1 out of 16 combinations used for CONSTANT stimulus 
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We used two stimulus conditions. One was designed to test whether the neural network could be 
trained to count the number of characters in the scene when all the characters were of a single 
type: either soldiers or insurgents. The second was designed to evoke a variable level of threat by 
presenting a mix of soldiers, insurgents and civilians. The number of characters in the first 
condition varied from 1-6, where as the total number of characters in this second condition was 
held constant at 6 in order to control for human vision processing that correlated only with the 
number of characters. We refer to the first condition as VARYING (because of the varying 
number of characters) and the second as CONSTANT (because of the constant number of 
characters). For VARYING, all 1 to 6 possible cases were present twice in random order within a 
single scan. For CONSTANT, the number of soldiers ranged from 0 to 3, and similarly for the 
number of insurgents. The number of civilians = 6 – (# soldiers + # insurgents ). With 0:3 X 0:3 
possible mixes, there were a total of 16 combinations. The order in which the combinations was 
presented to the subject were always a random permutation.  

Data Acquisition  
The fMRI data was obtained using a GE Signa 3.0T scanner, located at the U. of Texas at Austin 
Imaging Research Center. Sessions began by obtaining a T1-wieghted anatomy on the same slice 
prescription as the fMRI data using a SPGR sequence. The fMRI data was acquired using a T2*-
sensitive EPI sequence. Image quality was improved by using an 8-channel head-coil array 
combined with a GRAPPA parallel imaging scheme. The GRAPPA speed-up factor was 3:1 to 
obtain whole-brain volumes of 36-44 slices every 2 seconds, with a cubic voxel size of 2.5mm per 
side. The first 12 seconds of data was discarded to mitigate transient effects. The data was 
converted to a per voxel time series format. This data was then motion corrected, using a rigid 
body transformation, first within each scan and then between successive scans. Finally, a timing 
correction was applied to compensate for the interleaved slice acquisition. 

We then selected a relatively small subset of the voxels to use as inputs to the neural network 
(a.k.a. feature selection). This selection was based on the periodic nature of the block design. 
Responses to a periodic stimulation, regardless of its form, will show power only at the 
fundamental and harmonics of the stimulation. We performed a harmonic analysis in which we 
summed the time-series power present at the fundamental and harmonics 2—4. Those voxels with 
a fractional power greater than a particular threshold were selected for the next stage of 
processing. The power threshold was chosen to select a fixed number of voxels, typically ~3000. 

Results 
Both of our stimulus conditions produced statistically significant activity in a variety of brain 
regions. Similar patterns of activity were also obtained by more conventional forms of analysis 
such as correlation with a best-fit sinusoid at the block-stimulus frequency. We found clusters of 
activity in frontal lobes, posterior parietal lobes, and regions of ventral occipital cortex often 
associated with object selectivity.  

In this pilot study, our objective was to assess the viability of using neural networks (NN) to 
identify which brain activation patterns were indicative of certain simple characteristics of a 
dynamic virtual world. To our knowledge, this has never been done before. As noted above, we 
targeted two conditions: counting the number of characters and assessing threat level. In addition, 
mostly as a sanity check, we built NNs to distinguish between scenes of the town with and without 
characters in it. Because we selected voxels based on their correlation to alternating between these 
two cases, this presented a best case scenario for NNs. We used Matlab 2009 64-bit with the Neural 
Network Toolbox running on Linux OS for all of our results. 

For this study, we restricted the class of NN to the feed-forward variety (the most common). 
These have a fixed structure characterized by a) the number of layers, b) the number of nodes in 
each layer, and c) the transfer function for each layer. Given an instance of this fixed structure, 
chosen from an endless number of possible such structures, the only variable components of the 
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network are the weights at each node in the network. It is the adjustment of these weights to fit the 
example data that constitutes the “learning ”  process. This is a mathematical optimization 
problem, which like essentially all such problems, does not succumb to a direct solution. Rather an 
iterative search must be perform over the space of all possible weights. The search is guided by 
measuring the error between the network’s current output and the target output, which is given as 
part of the training set. The process gradually minimizes this error by traveling along the surface 
of the error function in a direction that reduces the error. However, the error function most always 
has many local minima into which the process will become trapped, so some additional element 
needs to be introduced to find the best local minima from a set of such. While simulated annealing 
is a general approach to this kind of problem, it is not provided by the NN Toolbox. Instead, we 
run the process multiple times, starting each run with a different set of randomly chosen initial 
weights. We then evaluate the goodness of each generated network using the validation set and 
keep the best one. As a basis of comparison, we calculate the average performance for the NN 
structure that yielded the best performance. In addition to classification, we also trained a network 
to give a continuous value output between 0-6 for counting characters. The performance for this 
kind of regression is given by an R-Value, where R = 1.0 is comparable to 100% correct. This is 
keeping with our plans to build a multi-dimensional representation of neuro-state-space. 

Here is a table of the results. Note the improvement from Subject A to the subsequence two 
subjects who where scanned several months after Subject A. This reflects our improvement of the 
fMRI protocol and data-processing. 

 

 
Counting 

Best 
Counting 
Average 

Threat-level 
Best 

Threat-level 
Average 

Continuous 
R-value 

Subject A 95% 80% 90% 75% .94 

Subject B 100% 96% 94% 87% 1.0 

Subject C 100% 96% 95% 85% 1.0 

Chance 14% 14% 25% 25% ---- 

Table 1 

 
 CONSTANT A: Characters Yes/No       CONSTANT A: Threat level 
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A more detailed graphical presentation of the best data for subject A is shown above as a 
“ confusion matrix ” . A confusion matrix is used to display the effectiveness of solving  
classification problems. It shows for each classification on test inputs, which classification was 
assigned to it by the NN. With a perfect classifier, only the diagonal elements would contain 
counts of inputs. For example, in the VARYING A: Counting, the Target class # = # characters-1. 
Column 3 shows that 12 inputs of brain volumes, sampled when 2 characters were presented, were 
classified correctly, while 2 where misclassified as 4 characters, resulting in a 85.7% success rate 
(bottom row). The lower right element shows the overall performance of 94.8%. 
 

 
  VARYING A: Characters Yes/No     VARYING A: Counting 

For the VARIABLE condition, we also performed a sensitivity analysis as a means to estimate 
which of the input voxel time series most strongly influenced the outputs of the NN. Starting from 
the mean input state of the system, each input was perturbed by a small amount, the effect of the 
perturbation upon the output state was noted. This process was repeated for all input voxels. These 
sensitivity values were then normalized to their observed maximum across voxels, and the results 
are visualized below (next page). Only those voxels with sensitivities >10% are shown. Note that 
the network is very selective: only ~300 of the original 2800 voxel time series are given a weight 
>10%. Note also that these highly-weighted voxels occur exclusively in the gray matter of the 
brain. Finally, we observe that the majority of the highly weighted voxels are clustered in ventral 
occipital regions that are probably part of object-selective visual cortex, and in posterior parietal 
regions that probably have visual attention and association. It is also worth noting that the NN 
gave little weight to any frontal brain regions. Similar results were observed in Subject B, except 
there was less activation of posterior parietal regions. Thus, this analysis demonstrates the efficacy 
of NNs in discerning task-or-stimulus-relevant fMRI inputs, and provides us a means to relate 
these associations back to individual brain anatomy. 
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 Sensitivity analysis results for Subject A 

Discussion 
The performance of the classifiers when compared to chance are excellent (see Table 1). The 
performance of 100% for counting, both for classification and regression, on more recent subjects 
is extremely encouraging. The better performance for Counting than Threat-level probably 
reflects the fact that assigning counting categories to stimuli is objective and that counting is a 
low-level cognitive activity. For threat level, the assignment was only quasi-objective, being based 
counting the number of friends vs. foes while the total number of characters was held constant.  

Our approach to sensitivity analysis as applied to multivariate/voxel pattern analysis (MVPA) is, 
as far as we know, novel. It could prove to be an important new technique for characterizing which 
regions of the brain contribute the most to particular cognitive processing. It underscores the 
importance of using whole brain data rather than regions of interest. Indeed, the technique tell us 
which regions are the most relevant to the cognitive computations. The technique could also be 
used as part of the feature selection process by iteratively using the sensitivity to select voxels for 
subsequence construction of NNs. 
To summarize, we have demonstrated the following: 

1) Virtual Worlds like those used in military training can be used effectively as fMRI stimulus 
2) Neural Networks can be constructed that can reliably identify brain activation patterns 

distinguishing the number of characters in the scene. 
3) A variety of mixes of Soldiers, Terrorists and Civilians can be classified reliably into threat 

level by an NN. 


